Nonlinear Finite Element Methods for Structures					
Module-No./Abbreviation	Credits	Workload	Term	Frequency	Duration
CE-WP04/FEM-II	6 CP	180 h	2 nd Sem.	Summer	1 Semester
				term	
Courses			Contact hours	Self-Study	Group Size:
Advanced Finite Element Methods			4 SWS (60 h)	120 h	No Restrictions

Prerequisites

Finite Element Methods in Linear Structural Mechanics (CE-P05), Basic knowledge in Structural Mechanics

Learning goals / Competences

After successfully completing the module, the students understand the origins and implications of nonlinearities in structural mechanics

- are able to formulate and solve nonlinear engineering problems with the finite element method accounting for geometrical and material nonlinearities
- can perform structural analyses, where the linear (1st order) theory is not valid (e.g. cables,
- membrane structures, load bearing and stability analyses beyond limit loads), and they can assess the results.

Content

The main topics of the course are:

- formulation and finite element discretization of the basic equations for nonlinear materials and geometrically nonlinear analysis in structural mechanics
- development of algorithms for the solution of the underlying nonlinear material and structural equations
- application to analyze the structural behavior considering material nonlinearity and large deformations
- nonlinear stability analysis of structures

Teaching methods / Language

Lecture (2h / week), Exercises (2h / week) / English

Mode of assessment

Written examination (120 min, 100%)

Requirement for the award of credit points

Passed final module examination

Module applicability

MSc. Computational Engineering, MSc. Bauingenieurwesen

Weight of the mark for the final score

6 %

Module coordinator and lecturer(s)

Prof. Dr. Roger A. Sauer, Assistants

Further information