Numerical Methods and Stochastics					
Module-No./Abbreviation	Credits	Workload	Term	Frequency	Duration
CE-WP08/NMS	6 CP	180 h	2 nd Sem.	Summer	1 Semester
				term	
Courses			Contact hours	Self-Study	Group Size:
Nuerical Methods and Stochastics			4 SWS (60 h)	120 h	No Restrictions

Prerequisites

Basic knowledge of: partial differential equations, numerical methods and stochastics

Learning goals / Competences

Students should become familiar with modern numerical and stochastic methods

After successfully completing the module, the students

- should be able to formulate and analyze data from a probabilistic perspective,
- should understand the theoretical aspects of FEM and FVM methods,
- should be familiar with modern iterative solvers for large systems of linear equations and their necessity for numerical PDE solving,
- should be familiar with standard methods for solving optimization problems.

Content

Numerical Methods:

- Boundary value problems for ordinary differential equations (shooting, difference and finite element methods)
- Finite element methods (brief retrospection as a basis for further material)
- Efficient solvers (preconditioned conjugate gradient and multigrid algorithms)
- Finite volume methods (systems in divergence form, discretization, relation to finite element methods)
- Nonlinear optimization (gradient-type methods, derivative-free methods, simulated annealing)

Stochastics:

- Fundamental concepts of probability and statistics, such as random variables, univariate distributions & densities, descriptive statistics, parameter estimation, & law of large no
- Regression, such as univariate and multivariate linear regression, least-squares estimation, data transformations, qualitative predictors, and regularization
- Exploratory data analysis, such as qq-plots and summary statistics

Teaching Methods / Language

Lectures (3h / week), Exercises (1h / week) / English

Mode of assessment

Written examination (180 min, 100%)

Requirement for the award of credit points

Passed final module examination

Module applicability

MSc. Computational Engineering, MSc. Bauingenieurwesen

Weight of the mark for the final score

6 %

Module coordinator and lecturer(s)

Prof. Dr. M. Weimar, Prof. Dr. J. Lederer, Assistants

Further information