Coupled Multiphysical Modeling and Simulations					
Module-No./Abbreviation	Credits	Workload	Term	Frequency	Duration
CE-WP15 / CMPMS	6 CP	180 h	$2^{\rm nd}/3^{\rm rd}$ Sem.	Winter/Sum	1 Semester
				mer term	
Courses			Contact hours	Self-Study	Group Size:
Coupled Multiphysical Modeling and			4 SWS / 60 h	120 h	No Restrictions
Simulations					

Prerequisites

Basic knowledge of continuum mechanics and mechanical modeling of materials is strongly recommended.

Learning goals / Competences

Students should develop a strong understanding of coupled multiphysical systems and their modeling. After successfully completing the module, the students shall be able to

- comprehend the properties and behavior of thermomechanical, electromechanical, and electromagnetic systems
- develop mathematical and numerical models for coupled systems
- implement and apply numerical methods for the computational solution of multiphysical systems
- utilize software to solve coupled problems, with a clear understanding of the underlying methods, properties, and limitations
- use machine learning techniques for surrogate modeling of complex multiphysical processes

Content

- Constitutive laws for thermomechanics, electromechanics, and electromagnetics
- Analytical methods for the mechanics of functional materials
- Numerical techniques for multiphysics coupling and simulation
- Non-linear electromechanical and electromagnetic material behavior
- Size-dependent effects in electromechanical systems
- Machine learning techniques applied to functional materials
- Practical implementation of the numerical models
- Simulation of real-world, industry-relevant problems

Teaching methods / Language

Lecture (2h / week), Exercises (2h / week) / Homework (40) / English

Mode of assessment

Final oral test of 30 minutes (100%) / Bonus points for homework

Requirement for the award of credit points

Passed oral test and passed homework

Module applicability

MSc. Computational Engineering

Weight of the mark for the final score

5 %

Module coordinator and lecturer(s)

Dr. S. Kozinov, Assistants

Further information